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A note on the drag on a slowly moving body in an 
axisymmetric rotating flow 
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(Revised 21 May 1979 and in revised form 19 March 1980) 

Avariational expression is constructed for the drag on a sphere of radius a that moves 
with speed U < Qa along the axis of a container of rotational speed Q and length 
h 9 a with E = v/Qa2 < 1. Two complementary approximations, based on the asymp- 
totic solutions in the limits 6 = Eh/2a f 03 and 6 4 0, and a variational interpolation 
between these approximations are compared with the numerical results of Hocking, 
Moore & Walton (1979). The limit 6 J. 0 is singular, and the variational principle fails 
in that limit in the sense that the error in the drag is of the same order as the error 
in the trial function rather than of second order therein; nevertheless, the variational 
interpolation is in error by less than 0- 1 % for 6 > 0.003 and by less than 1 yo for all 6. 
The variational formulation may be of interest in other contexts. 

1. Introduction 
Hocking, Moore & Walton (1979; hereinafter referred to as HMW followed by the 

appropriate equation or section number therefrom) calculate the drag on a rigid sphere 
of radius a that moves with speed U along the axis of a rotating flow of angular speed 
Q that is bounded by rigid, parallel planes a distance h apart on the assumptions that 
U < Qa, E = v / Q d  < 1 (v = kinematic viscosity), and h % aE-a. These assumptions 
permit the boundary conditions on the sphere to be imposed on its equatorial projec- 
tion, 0 < r < a, z = 0 [so that the formulation presumably is valid for any axisymmetric 
body of length 1 = O(a)] and the perturbation flow to be expressed in terms of the 
discontinuity (across the equatorial plane) in azimuthal velocity, which I pose in the 
dimensionless formf 

{(s) E ( z ) ( r ,O- ) - z ) ( r ,0+) } / (2U)  (s = r /a) .  (1) 

The ratio of the drag on the sphere to that for an unbounded flow is given by 

t A development in terms of the pressure discontinuity 

p(r,O+)--p(r,O-) = 4pURa s,’ 5d.9 

leads to an equivalent but somewhat simpler formulation than that developed below; however, 
I have followed HMW in choosing [(s) as the basic dependent variable. 
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The formulation of the resulting boundary-value problem is effected by HMW in 
terms of Fourier-Bessel integrals and culminates in a pair of dual integral equations for 

Z(u) = IO1 [(s) J,(us)sds = u-’A(u), (3) 

the dimensionless Hankel transform of c(s). They then obtain numerical solutions by 
expanding Z in spherical Bessel functions and truncating the infinite set of equations 
for the expansion coefficients. They also obtain analytical approximations to 9 in 
the limits S $ 0  and 8.r co, where 6 = Eh/2a .  I present here a variational formulation, 
which is based on the integral equation for [(s) and provides direct approximations 
for 9. 

2. Integral equation and variational principle 
The substitution of (3) into the first of the dual integral equations for A(u) ,  

HMW(2.15) ,  which is derived from the boundary condition on the translational 
velocity of the sphere, yields the integral equation 

where 

G(s, c) = JOm A(u) J,(us) Jl(ucr) du, (5) 

A(U) = [ I -  eXp { - (&T + 8,) U3}]-’ { 1 -eXp ( - 8,U3)}{i - eXp ( - 6Bu3),>, ( 6 ~ )  

&T,B vhT,B/Qa3 = 26hT,B/(hT+h,), ( 6 b )  

apd hT (hB) is the distance of the top (bottom) of the container from the equatorial 
plane. Note that A = tanh (46u3) if hT = h,. The second of the dual integral equations, 
HMW(2.16) ,  is equivalent to the boundary condition [(s) = 0 in s > 1 .  

Multiplying (4) through by s{(s), integrating over (0 ,  1 ) ,  and dividing the result by 
the square of ( 2 ) ,  I obtain 

which is a variational expression of Schwinger’s type (Saxon & Schwinger 1968). It 
is stationary with respect to first-order variations of c(s) about the true solution to 
(4), exceeds the true value of 1 / 9  for any approximation to [(s) for which the above 
integrals exist (see appendix), and is invariant under a scale transformation of 6. 
Alternative forms, based on the normalized trial function 

are 
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9 
f -7 L 

s computed (1711 (18) (12) HMW( 4.8) 

10.0 1.00947 1.00947 1.00947 1.00946 
6.0 1.0156 1.0156 1.0156 1.0156 
4.0 1.0231 1.0231 1.0231 1.0231 
2.5 1.0364 1.0364 1.0364 1.0362 
1.5 1.0594 1.0594 1.0594 1.0589 
1.0 1.0873 1.0873 1.0873 1.0862 
0.6 1.1411 1.1411 1.1411 1.1383 
0.4 1.2060 1.2060 1.2057 1,1995 
0.25 1.3183 1.3183 1.3171 1.2987 
0.15 1.5084 1.5084 1.503 
0.1 1.7345 1.7344 1.717 
0.06 2.1595 2.1592 2.09 
0.04 2.6538 2.e533 2.46 
0.025 3.4735 3.4725 2.96 
0.015 4.7977 4.7956 3.55 
0.010 6.3218 6.3 180 4.09 

(1286/.rr)g 

computed (17). (18) (14) E M  W (5.7) 
r A 7 ___- 

0.006 2.2354 2.2336 1.31 1.85 
0.004 2.0274 2.0256 1.26 1.74 
0.0025 1.8368 1.8342 1.21 1.64 
0.0015 1.6752 1.6713 1.17 1.54 
0.001 1.5724 1.5674 1.15 1.47 

TABLE 1. Comparison for Sg = ST = 8, of 9 = D/Do (10 3 6 2 0.01) and (1286/n) 9 (0.006 < 6 < 
0.001), as computed by Hocking, Moore & Walton (1979) using a truncation method, with 
HMW(4.8), HMW(5.7) and the present apprcximations 

and 

9-l = (&) IOrn A(u) j 2 ( u )  du, 

where 2 is the Hankel transform of [cf. (3)]. 
The variational principle may be used to develop systematic approximations to g 

and 9 through the requirement that 119 be stationary with respect to variations of 
each of the coefficients in an appropriate expansion of LJs). In particular, the expansion 
of s-l( 1 - s2)* 6 in Jacobi polynomials leads to the equivalent of HMW(3.6) and implies 
the monotonic increase, with the order of truncation, of 9 towards its exact value. 
Typically more valuable, however, is the construction of direct approximations to 9 
through the positing of elementary or composite approximations to 5. 

3. Direct variational approximations 
The solution of (4) in the limit 6 f co yields 

h p1 = #s(l -s2)-4, 2, = Qj,(u), 
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the substitution of which into (9 b )  yields the approximation 

6 
9 y 1  = ;IOm A(u)jZ, (u) du, 

where j, is a spherical Bessel function. The numerical evaluation of (1  1) is facilitated 
by separating out the limiting value A - 1 (as S f c o ) ,  as suggested by HMW. In  
particular, if h, = h, (S, = S, = S), ( I  1) may be transformed to 

The approximation (12) is in error by less than 0.1 % for 6 2 0-1 (see table 1);  on the 
other hand (and not surprisingly), it fails as 6 4 0. 

The solution of (4) in the limit S J. 0 (see HMWS 5) yields 
A c2 = 1 2 ~ ( 1 - ~ 2 ) ,  2, = 2 4 ~ - ~ J ~ ( u ) ,  (13% b )  

the substitution of which into (9b) yields the approximation 

This approximation gives the correct limit as 6.1 0, but it is inaccurate in the neighbour- 
hood of 6 = 0 (see table 1);  in particular, 

9i1= (128/~)6{1-1*256Sg+O(St)) (S, = S r  = SJ.0). (15) 

This differs from HMW(5.7), which is of the same form with 1.256 replaced by 4.685.t 
It appears, then, that the variational principle fails in the limit S J. 0 in the sense that 
the relative error in 9 is of the same order as the relative error in the trial function &‘, 
namely e = O(Si), rather than O(e2) as the variational principle presumably implies 
[and as is true for ( 1 l)]; see 3 5 and appendix for further discussion. 

4. Composite variational approximation 
The substitution of the trial function 

&‘ = (Sl + a&‘2)/(1+ a) (16) 

into (9a )  and the determination of a through the requirement dB-l/da = 0 yields the 
composite approximation 

9 = ( 9 1 1  + 9 2 2  - 2(911922/912)1/{1 - ( 9 1 1 9 2 2 / 9 ; 2 ) 1 7  (17) 

where9m,isobtained by replacing g(s) &‘(a) bygm(s) &‘,(a) in (9a) orB2(u) by &, (u )  d,(u) 
in (9 b). In  particular, if pl and &‘, are given by ( 10 a)  and ( 13 a) ,  

9 x 1  = gl(1l) ,  9,, = B2(14), 9 ~ ’  = - A ( u ) ~ ~ ( u )  J3(u)u-2du. (18) “Im n o  

The approximation given by (1  7 )  and (1  8) with h, = h, is in error by less than 0.1 % 
for 6 > 0.003 (see table 1)  and by less than 1 % for all 6. It exhibits the limiting form 

t I get 4.723 using c(#) = - 0.9813 (Jahnke t Emde 1943). I also get 4.72 through graphical 
extrapolation of HMW’s computed values of 9. 
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(15), with 1.256 replaced by 4.092, as 6 J 0; accordingly, although quantitatively far 
superior to (14)) it fails qualitatively in exactly the same marlner. 

5. The limit 840 
The failure of the variational expression (7 )  to yield an error in 29 that is of second 

order in the error in the trial function in the limit S 4 0 stems from the singular character 
of the kernel of the integral equation (4) in that limit (see appendix). It is reminiscent 
of a similar difficulty in the geometrical-optics limit for the variational formulation 
of the problem of diffraction through an aperture in a plane screen. A formulation 
based on the aperture field (Levine & Schwinger 1948) yields excellent results for 
moderate frequencies but is relatively unsuccessful for high frequencies, whereas a 
complementary formulation based on the discontinuity across the screen (Levine & 
Schwinger 1949) yields excellent results for high frequencies but fails qualitatively in 
the low-frequency limit. The latter formulation is rather more complicated, however, 
and it is not clear that it has an analog for the present problem. (I made a cursory 
attempt to obtain such a formulation, based on the axial velocity in the equatorial 
plane, and was confronted with divergent integrals.) 

This work was partially supported by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE77-24005, and by a contract with the Office of 
Naval Research. 

Appendix. Proof of variational principle 
Let c*(s) be the true solution of the integral equation (4), f* be its normalized 

counterpart, as given by ( 8 ) )  and 9* be the corresponding value of 29, as given by (2). 
Now consider the positive-definite measure (of the error in f- f,) 

E = (6) lo1 lo1 G(s ,  a)  ( P ( 4  - C*(s,) ma) - P* (a )>s  dsada,  (A 1)  

where f(s) is a trial function, normalized as in (8)) that is linearly independent of f* 
and for which the required integrals exist. The expansion of the integrand in (A 1 )  
yields three distinct integrals, two of which are quadratic in f and f*, respectively, 
and are given by (9 a )  as 

' 1 ' G(s, a)  C(5) [ ( a )s  dsa da = (c) 9-', 
0 0  1 1 l o lG(s ,a )g , ( s )C , (~ ) sdsada  = (g) 9;l; (A 2a,b)  

0 
the third is given by 

which follows from the invocation of (4) for c*, (8) for f and f*, and (2) for 9*. It then 
follows that 

and hence that 9 .c 9*, as stated in 3 2. 

E = 9-'-9~1> 0 (A 3) 
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A It al%o follows from (A 1 )  and (A 3), after substituting G from (5 ) ,  invoking (3) for 
Z and Z,, and dividing the result by 9;l, as given by (9b) ,  that 

This suggests that (9 - 9*)/9* = O(e2) if p- p, = O ( E ) ,  and this is true except for 
6 J. 0, in which limit G is singular, 8 = 64, and (A 4) yields 

rather than O(e2). 
(9-9*)/9* = 0(€26-+) = O(s) 
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